Phonology II

Andrew Murphy andrew.murphy@uchicago.edu

andrew.murpnywucnicago.edu

Week 3 04.13.22

LING 20001: Introduction to Linguistics

• In a spoken language, sounds are combined to make words.

• In a spoken language, sounds are combined to make words.

$$\label{eq:continuity} \begin{array}{ll} \left[ei't^h\widetilde{\imath}\overset{n}{n}\theta\right] & \text{narrow/phonetic transcription} \\ \text{'eighteenth'} & \end{array}$$

In a spoken language, sounds are combined to make words.

$$\label{eq:continuity} \begin{array}{ll} \left[ei't^h\widetilde{x}\underline{n}\theta\right] & \text{narrow/phonetic transcription} \\ \text{'eighteenth'} & \end{array}$$

• This tells us that at least the following are observable sounds of English:

In a spoken language, sounds are combined to make words.

$$\begin{array}{ll} \hbox{ [ei'} t^h \widetilde{\textbf{i}} \, \underline{\textbf{n}} \theta] & \hbox{narrow/phonetic transcription} \\ \hbox{ \'eighteenth'} & \end{array}$$

This tells us that at least the following are observable sounds of English:

Do all of these belong to the basic inventory of sounds?

 The distribution of certain sounds is predictable: [p] and [ph] are in complementary distribution.

• The distribution of certain sounds is predictable: [p] and $[p^h]$ are in complementary distribution.

```
'pity'
                           [spin]
                                        'spin'
                                                      [tap]
                                                               'top'
[phaui] 'power' [pphouz] 'oppose'
                           [spaus]
                                        'spouse'
                                                     [tiip]
                                                               'trip'
             'oppose'
                           [spaid.]
                                        'spider'
                                                      [hip]
                                                               'heap'
```

• The distribution of certain sounds is predictable: [p] and $[p^h]$ are in complementary distribution.

• Their distribution is predictable: aspirated voiceless stops like $[p^h]$ always occur in onset of a stressed syllable, while unaspirated [p] occurs everywhere else.

• The distribution of certain sounds is predictable: [p] and $[p^h]$ are in complementary distribution.

- Their distribution is predictable: aspirated voiceless stops like $[p^h]$ always occur in onset of a stressed syllable, while unaspirated [p] occurs everywhere else.
- If $[p^h]$ were part of the basic inventory of sounds, what stops it from occurring at the end of a word?

We therefore assume two levels of representation for sounds:

We therefore assume two levels of representation for sounds:

An abstract underlying representation (/X/)

We therefore assume two levels of representation for sounds:

- An abstract underlying representation (/X/)
- A observable surface representation ([X])

We therefore assume two levels of representation for sounds:

- An abstract underlying representation (/X/)
- A observable surface representation ([X])

underlying
representation →
(phoneme)

surface representation → (allophones)

We therefore assume two levels of representation for sounds:

- An abstract underlying representation (/X/)
- A observable surface representation ([X])

underlying representation → (phoneme)

surface representation → (allophones)

/p/ surfaces as $[p^h]$ at beginning of a stressed syllable, [p] in the middle and at the end of a word (everywhere else).

At the phonemic level, the words *pit* and *spit* have the same sound /p/.

At the phonemic level, the words *pit* and *spit* have the same sound /p/.

Underlying Representation /pɪt/ /spɪt/ (phonemes)

At the phonemic level, the words *pit* and *spit* have the same sound /p/.

At the phonemic level, the words *pit* and *spit* have the same sound /p/.

How do we get from the UR to the SR?

Phonological rules

We can express the relationship between a phoneme and its allophones by means of a rule:

Phonological rules

We can express the relationship between a phoneme and its allophones by means of a rule:

Phonological rules

We can express the relationship between a phoneme and its allophones by means of a rule:

underlying representation → (phoneme)

surface representation → (allophones)

What are the rules for deriving the allophones of /p/ in English?

$$egin{pmatrix} [p^h\mathrm{tt}] & ext{`pit'} & [\mathrm{spit}] & ext{`spit'} & [\mathrm{dip}] & ext{`dip'} \ [p^h\mathrm{em}] & ext{`pain'} & [\mathrm{spem}] & ext{`Spain'} & [\mathrm{erp}] & ext{`ape'} \ \end{pmatrix}$$

What are the rules for deriving the allophones of /p/ in English?

$$p \rightarrow p^h \, / \, [_{\sigma} \,]_{___}$$
 (Aspiration Rule)

What are the rules for deriving the allophones of /p/ in English?

$$p \rightarrow p^h \, / \, [_{\sigma} \,]_{___}$$
 (Aspiration Rule)

'/p/ becomes [ph] at the beginning of a stressed syllable'

Underlying Representation /pɪt/ /spɪt/ /dɪp/

Surface Representation

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ)	$p^h it$	_	_
Surface Representation	[p ^h ɪt]		

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ)	$p^h it$	_	_
Surface Representation	[p ^h ɪt]	[spit]	

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ)	$p^h it$	_	_
Surface Representation	[p ^h ɪt]	[spit]	[dɪp]

Diagnosing phonemes and allophones

Diagnosing phonemes and allophones

If two sounds [a] and [b] are in complementary distribution, then they are allophones of the same underlying phoneme /X/:

Diagnosing phonemes and allophones

If two sounds [a] and [b] are in complementary distribution, then they are allophones of the same underlying phoneme /X/:

If two sounds [a] and [b] are in complementary distribution, then they are allophones of the same underlying phoneme /X/:

If two sounds [a] and [b] are in complementary distribution, then they are allophones of the same underlying phoneme /X/:

The sound with more general distribution is taken to be /X/

If two sounds [a] and [b] are in complementary distribution, then they are allophones of the same underlying phoneme /X/:

The sound with more general distribution is taken to be /X/

② If two sounds [a] and [b] form a minimal pair, then they are not allophones of the same underlying phoneme /X/:

If two sounds [a] and [b] are in complementary distribution, then they are allophones of the same underlying phoneme /X/:

The sound with more general distribution is taken to be /X/

② If two sounds [a] and [b] form a minimal pair, then they are not allophones of the same underlying phoneme /X/:

If [a] is the only allophone then it is also the underlying representation (the phoneme /a/).

• We can take any two sounds of English:

• Then we can ask: Are there any minimal pairs?

- Then we can ask: Are there any minimal pairs?
- Yes, e.g. [t^hoυ] 'toe' and [goυ] 'go'

- Then we can ask: Are there any minimal pairs?
- Yes, e.g. [thou] 'toe' and [gou] 'go'
- They are not allophones of the same underlying segment.

- Then we can ask: Are there any minimal pairs?
- Yes, e.g. [thoυ] 'toe' and [goυ] 'go'
- They are not allophones of the same underlying segment.

- Then we can ask: Are there any minimal pairs?
- Yes, e.g. [thou] 'toe' and [gou] 'go'
- They are not allophones of the same underlying segment.
- How do we know what the underlying segment is?

- Then we can ask: Are there any minimal pairs?
- Yes, e.g. [thou] 'toe' and [gou] 'go'
- They are not allophones of the same underlying segment.
- How do we know what the underlying segment is?
- In many cases, it will the sound itself but we have to check that it isn't an allophone of another sound!

We compare can with further sounds of English:

• Is [g] in complementary distribution with any other sound?

We compare can with further sounds of English:

• Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.
- [t] forms minimal pairs with [g] ('let' vs. 'leg') and [v] ('sit' vs 'sieve').

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.
- [t] forms minimal pairs with [g] ('let' vs. 'leg') and [v] ('sit' vs 'sieve').
- Are there minimal pairs with [t] and $[t^h]$?

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.
- [t] forms minimal pairs with [g] ('let' vs. 'leg') and [v] ('sit' vs 'sieve').
- Are there minimal pairs with [t] and $[t^h]$? No, they are in complementary distribution and therefore allophones of the same underlying sound.

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.
- [t] forms minimal pairs with [g] ('let' vs. 'leg') and [v] ('sit' vs 'sieve').
- Are there minimal pairs with [t] and $[t^h]$? No, they are in complementary distribution and therefore allophones of the same underlying sound.
- We will assume the surface allophone with the more general distribution is the underlying one.

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.
- [t] forms minimal pairs with [g] ('let' vs. 'leg') and [v] ('sit' vs 'sieve').
- Are there minimal pairs with [t] and $[t^h]$? No, they are in complementary distribution and therefore allophones of the same underlying sound.
- We will assume the surface allophone with the more general distribution is the underlying one.

- Is [g] in complementary distribution with any other sound? No, its distribution is not predictable.
- In this case, it is the only allophone of its underlying sound.
- [t] forms minimal pairs with [g] ('let' vs. 'leg') and [v] ('sit' vs 'sieve').
- Are there minimal pairs with [t] and $[t^h]$? No, they are in complementary distribution and therefore allophones of the same underlying sound.
- We will assume the surface allophone with the more general distribution is the underlying one.
- /g/, /t/, /v/ are phonemes, but there is no phoneme */t $^{\rm h}$ / in English.

For some speakers, a final stop can be optionally unreleased []:

```
        [tap]
        ~
        [tap]
        'top'

        [tnp]
        ~
        [tnp]
        'trip'

        [hip]
        ~
        [hip]
        'heap'
```

For some speakers, a final stop can be optionally unreleased []:

These two sounds are not in complementary distribution.

For some speakers, a final stop can be optionally unreleased [']:

```
[tap] \sim [tap]
                     'top'
[t_{IID}] \sim [t_{IID}]
                     'trip'
[hip]
        ~ [hip]
                     'heap'
```

- These two sounds are not in complementary distribution.
- However, they also don't form any minimal pairs (no change in meaning)

For some speakers, a final stop can be optionally unreleased []:

```
[tap] ~ [tap] 'top'
[tɪɪp] ~ [tɪɪp] 'trip'
[hip] ~ [hip] 'heap'
```

- These two sounds are not in complementary distribution.
- However, they also don't form any minimal pairs (no change in meaning)
- There are no words distinguished by [p] and [p¹] → Not phonemes

For some speakers, a final stop can be optionally unreleased []:

```
[tap] ~ [tap] 'top'
[tɪɪp] ~ [tɪɪp] 'trip'
[hip] ~ [hip] 'heap'
```

- These two sounds are not in complementary distribution.
- However, they also don't form any minimal pairs (no change in meaning)
- There are no words distinguished by [p] and [p¹] → Not phonemes
- In such a case, we say that these sounds are allophones in free variation

A similar case of free variation can be seen with the alveolar tap $[{\bf r}]$ and an alveolar stop like [t]:

[ɪaɪtɹ]	~	[raiti]	'writer'
[biti]	~	[piti]	'bitter'
[wyteni]	~	[wvteni]	'whatever'

A similar case of free variation can be seen with the alveolar tap $[\mathfrak{c}]$ and an alveolar stop like $[\mathfrak{t}]$:

[lait]	~	[raiti]	'writer'
[biti]	~	[piri]	'bitter'
[wvteni]	~	[hvleni]	'whatever'

The same is true with the glottal stop [?] in British varieties:

If two sounds [a] and [b] are in complementary distribution, then

- 2 If two sounds [a] and [b] form a minimal pair, then | [a] [b]
- ③ If two sounds [a] and [b] are **neither** in complementary distribution **nor** form a minimal pair, then they are allophones of the same underlying phoneme /X/:

Categorizing sounds

Are the sounds in complementary distribution?

Categorizing sounds

Are the sounds in complementary distribution?

Yes

Are the sounds phonetically similar?

Categorizing sounds

Yes

Are the sounds phonetically similar?

Yes

They are allophones of the same phoneme

e.g. [p^h] vs. [p]

underlying
representation →
(phoneme)

surface representation → (allophones)

What are the rules for deriving all of the allophones of /p/ in English?

What are the rules for deriving all of the allophones of /p/ in English?

$$p o p^h \, / \, [_{\sigma} \,]$$
 (Aspiration Rule)

What are the rules for deriving all of the allophones of /p/ in English?

$$p \rightarrow p^h / [_{\sigma} \]$$
 (Aspiration Rule)

'/p/ becomes $[p^h]$ at the beginning of a stressed syllable'

What are the rules for deriving all of the allophones of /p/ in English?

$$p o p^h \, / \, [_{\sigma} \,]$$
 (Aspiration Rule)

'/p/ becomes $[p^h]$ at the beginning of a stressed syllable'

$$p \rightarrow p^{\mbox{\tiny 7}}$$
 (No Release Rule)

What are the rules for deriving all of the allophones of /p/ in English?

$$p \rightarrow p^h \, / \, [_{\sigma} \,]_{___}$$
 (Aspiration Rule)

'/p/ becomes $[p^h]$ at the beginning of a stressed syllable'

$$p \rightarrow p^{\text{\tiny $}} \text{ / } \underline{\hspace{1cm}} \text{#} \hspace{1cm} \text{(No Release Rule)}$$

'/p/ becomes [p] at the end of a word'

Underlying Representation /pɪt/ /spɪt/ /dɪp/

Surface Representation

Underlying Representation /pɪt/ /spɪt/ /dɪp/

Aspiration (p \rightarrow p^h / [σ]____)

Surface Representation

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ)	$p^h it$	_	
Surface Representation			

/pɪt/	/spit/	/dɪp/
p^h it	_	_
	p ^h rt	

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ ')	$p^h it$	_	_
No Release ($p \rightarrow p^{\gamma}$ /#) (Optional)			
Surface Representation			

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ ')	$p^h it$	_	_
No Release ($p \rightarrow p^{\gamma}$ /#) (Optional)	_		
Surface Representation			

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ ')	$p^h it$	_	_
No Release ($p \rightarrow p^{\gamma} / $ #) (Optional)	_	_	
Surface Representation			

Underlying Representation	/pɪt/	/spit/	/dɪp/
Aspiration ($p \rightarrow p^h / [\sigma]$)	$p^h it$	_	_
No Release ($p \rightarrow p^{\gamma} / \#$) (Optional)	_	_	dīp'/—
Surface Representation			

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ)	$p^h it$	_	_
No Release ($p \rightarrow p^{\gamma} / $ #) (Optional)	_	_	dīp³/—
Surface Representation	[p ^h ɪt]		

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ)	$p^h it$	_	_
No Release ($p \rightarrow p^{\gamma} / $ #) (Optional)	_	_	dīp³/—
Surface Representation	[p ^h ɪt]	[spit]	

Underlying Representation	/pit/	/spit/	/dɪp/
Aspiration (p \rightarrow p ^h / [σ)	$p^h{}_{I}t$	_	_
No Release ($p \rightarrow p^{\gamma} /#$) (Optional)	_	_	dīp³/—
Surface Representation	[p ^h ɪt]	[spit]	[dɪp [¬]]/[dɪp]

Look at this list of words from Korean:

[kɔːɾi]	'distance'	[talda]	'sweet'
[əːlmana]	'how much'	[nore]	'song'
[purida]	'to use'	[solhwa]	'legend'
[pulgogi]	'barbecued meat'	[saram]	'person'
[tal]	'moon'	[irwm]	'name'
[kw:rida]	'to draw'	$[\mathrm{sul}]$	'water'

• Look at this list of words from Korean:

[kɔːɾi]	'distance'	[talda]	'sweet'
[əːlmana]	'how much'	[nore]	'song'
[purida]	'to use'	[solhwa]	'legend'
[pulgogi]	'barbecued meat'	[saram]	'person'
[tal]	'moon'	[irwm]	'name'
[kw:rida]	'to draw'	$[\mathrm{sul}]$	'water'

• Are [f] and [f] allophones or phonemes?

Step 1: Look for minimal pairs

[kɔːɾi]	'distance'	[talda]	'sweet'
[əːlmana]	'how much'	[nore]	'song'
[purida]	'to use'	[solhwa]	'legend'
[pulgogi]	'barbecued meat'	[saram]	'person'
[tal]	'moon'	[irwm]	'name'
[kw:rida]	'to draw'	[sul]	'water'

Step 1: Look for minimal pairs

[kɔːɾi]	'distance'	[talda]	'sweet'
[əːlmana]	'how much'	[nore]	'song'
[purida]	'to use'	[solhwa]	'legend'
[pulgogi]	'barbecued meat'	[saram]	'person'
[tal]	'moon'	[irwm]	'name'
[kw:rida]	'to draw'	[sul]	'water'

No minimal pairs, so we can assume that do not belong to the same underlying phoneme.

Step 1: Look for minimal pairs

[kɔːɾi]	'distance'	[talda]	'sweet'
[ɔːlmana]	'how much'	[nore]	'song'
[purida]	'to use'	[solhwa]	'legend'
[pulgogi]	'barbecued meat'	[saram]	'person'
[tal]	'moon'	[irwm]	'name'
[kw:rida]	'to draw'	[sul]	'water'

- No minimal pairs, so we can assume that do not belong to the same underlying phoneme.
- Probably two allophones of a single phoneme if in complementary distribution (since they are phonetically similar sounds – both voiced alveolar sounds)

Step 2: Organize the forms by alternant

[1]			$[\mathfrak{c}]$		
ta	l	da	kər	ſ	i
) or	l	mana	$_{ m no}$	ſ	3
cs	l	hwa	pu	ſ	ida
pu	l	gogi	\mathbf{sa}	ſ	am
ta	l	#	i	ſ	uım
su	l	#	kur	ſ	ida

Step 2: Organize the forms by alternant

	[1]			[r]	
ta	l	da	kər	ſ	i
or .	l	mana	no	ſ	ε
sə	l	$_{ m hwa}$	pu	ſ	ida
pu	l	gogi	\mathbf{sa}	ſ	am
ta	l	#	i	ſ	um
su	1	#	kur	ſ	$_{ m ida}$

• Are [r] and [l] in complementary distribution?

Step 2: Organize the forms by alternant

	[1]			[r]	
$_{\mathrm{ta}}$	l	da	kər	ſ	i
IC	l	$_{ m mana}$	no	ſ	ε
\mathbf{c}	l	$_{ m hwa}$	pu	ſ	ida
pu	l	gogi	\mathbf{sa}	ſ	am
$_{\mathrm{ta}}$	l	#	i	ſ	um
su	l	#	kun	ſ	$_{ m ida}$

• Are $[\mathfrak{c}]$ and $[\mathfrak{l}]$ in complementary distribution? Yes!

Step 3: Identify the conditioning environment

	[1]			$[\mathbf{r}]$	
ta	l	da	kər	ſ	i
ıc	l	$_{ m mana}$	$_{ m no}$	ſ	3
sə	1	$_{ m hwa}$	pu	ſ	ida
pu ta	1	gogi	\mathbf{sa}	ſ	am
ta	l	#	i	ſ	uım
su	l	#	ku:	ſ	ida

Step 3: Identify the conditioning environment

	[1]			$[\mathbf{r}]$	
ta	1	da	kər	ſ	i
ic l	1	mana	no	ſ	ε
sə	1	$_{ m hwa}$	pu	ſ	ida
pu	1	gogi	\mathbf{sa}	ſ	am
ta	l	#	i	ſ	шm
su	l	#	kun	ſ	ida

• [r] only occurs before a vowel

Step 3: Identify the conditioning environment

	[1]			$[\mathbf{r}]$	
ta	l	da	kər	ſ	i
) SI	l	mana	no	ſ	ε
sə	l	hwa	pu	ſ	ida
pu	l	gogi	$_{ m sa}$	ſ	am
ta	l	#	i	ſ	um
su	l	#	kur	ſ	ida

- [r] only occurs before a vowel
- [l] occurs everywhere else (before oral and nasal stops [d, m], fricatives [h] and word boundaries #)

Step 4: determine the underlying representation.

Step 4: determine the underlying representation.

• Usually, we select the allophone with the more general distribution as the underlying phoneme.

Step 4: determine the underlying representation.

 Usually, we select the allophone with the more general distribution as the underlying phoneme.

Step 5: Write the rule and check that it applies.

What is the rule that ensures we have $[\mathfrak{c}]$ before vowels in Korean?

Step 5: Write the rule and check that it applies.

$$/I/ \rightarrow$$

What is the rule that ensures we have [r] before vowels in Korean?

Step 5: Write the rule and check that it applies.

$$/I/ \rightarrow [t]$$

What is the rule that ensures we have [r] before vowels in Korean?

Step 5: Write the rule and check that it applies.

$$/I/ \rightarrow [r] / _V(owel)$$

What is the rule that ensures we have [r] before vowels in Korean?

$$/I/ \rightarrow [r]/ _V$$

$$/I/ \rightarrow [r]/ _V$$

UR /sul/ /salam/
///
$$\rightarrow$$
 [r] / __ V __
SR

UR /pulgogi/ /pulida/
/// \rightarrow [r] / __ V
SR

$$/I/ \rightarrow [r]/ _V$$

$ \begin{cases} UR \\ /I/ \rightarrow [r]/ V \\ SR \end{cases} $	/sul/ — [sul]	/salam/ saram [saram]
UR	/pulgogi/	/pulida/
/I/ → [r] / V	—	purida
SR	[pulgogi]	[purida]

Step 5: Write the rule and check that it applies.

$$/I/ \rightarrow [r]/ _V$$

$$\begin{array}{|c|c|c|c|c|c|} \hline UR & /sul/ & /salam/ \\ /l/ \rightarrow [r]/ & V & - & saram \\ SR & [sul] & [saram] \\ \hline UR & /pulgogi/ & /pulida/ \\ /l/ \rightarrow [r]/ & V & - & purida \\ SR & [pulgogi] & [purida] \\ \hline \end{array}$$

Even though [1] and [1] are not allophones of the same underlying phoneme in English, they are in Korean!

Here is some data from Eastern Inuktitut:

[aniguvit]	'if you leave'	[iglumit]	'from a house'
[ukiaq]	'late fall'	[pinna]	'that one up there'
[ani]	'female's brother'	[iglu]	'(snow)house'
[aiviq]	'walrus'	[panna]	'that place up there'
[aglu]	'seal's breathing hole'	[ini]	'place, spot'
[aivuq]	'she goes home'	[ukiuq]	'winter'
[iglumut]	'to a house'	[anigavit]	'because you leave'

Here is some data from Eastern Inuktitut:

[aniguvit]	'if you leave'	[iglumit]	'from a house'
[ukiaq]	'late fall'	[pinna]	'that one up there'
[ani]	'female's brother'	[iglu]	'(snow)house'
[aiviq]	'walrus'	[panna]	'that place up there'
[aglu]	'seal's breathing hole'	[ini]	'place, spot'
[aivuq]	'she goes home'	[ukiuq]	'winter'
[iglumut]	'to a house'	[anigavit]	'because you leave'

Are the vowels [i], [a] and [u] phonemes or allophones?

We can arrange the data into minimal pairs:

[iglumut]	'to a house'	[iglum <mark>i</mark> t]	'from a house'
[panna]	'that place up there'	[p <mark>i</mark> nna]	'that one up there'
[ani]	'female's brother'	[<mark>i</mark> ni]	'place, spot'
[uki <mark>a</mark> q]	'late fall'	[uki <mark>u</mark> q]	'winter'
[aglu]	'seal's breathing hole'	[<mark>i</mark> glu]	'(snow)house'
[aivuq]	'she goes home'	[aiv <mark>i</mark> q]	'walrus'
[aniguvit]	'if you leave'	[anig <mark>a</mark> vit]	'because you leave'

We can arrange the data into minimal pairs:

[iglumut]	'to a house'	[iglumit]	'from a house'
[panna]	'that place up there'	[p <mark>i</mark> nna]	'that one up there'
[ani]	'female's brother'	[<mark>i</mark> ni]	'place, spot'
[ukiaq]	'late fall'	[uki <mark>u</mark> q]	'winter'
[aglu]	'seal's breathing hole'	[<mark>i</mark> glu]	'(snow)house'
[aivuq]	'she goes home'	[aiv <mark>i</mark> q]	'walrus'
[aniguvit]	'if you leave'	[anig <mark>a</mark> vit]	'because you leave'

They are all phonemes: /a/, /i/, /u/

Consider these Spanish data:

[drama]	'drama'	[kaða]	'each'
$[\mathrm{senti} \check{o} o]$	'felt'	[fiðel]	'Fidel'
[dar]	'to give'	[dexo]	'I leave'
[oðio]	'hatred'	[nuðo]	'knot'
[estuðiante]	'student'	[dos]	'two'
[donde]	'where'	$[e\delta a\delta]$	'age'

Consider these Spanish data:

[drama]	'drama'	[kaða]	'each'
[sentiðo]	'felt'	[fiðel]	'Fidel'
[dar]	'to give'	[dexo]	'I leave'
[oðio]	'hatred'	[nuðo]	'knot'
[estuðiante]	'student'	[dos]	'two'
[donde]	'where'	$[e\delta a\delta]$	'age'

Are $[\c d]$ and $[\c d]$ phonemes or allophones?

 $[\underline{d}]$ and $[\check{\delta}]$ are allophones.

 $[\underline{d}]$ and $[\check{\delta}]$ are allophones.

Conditioning environment: [ð] after a vowel, [d] occurs everywhere else

What's the rule?

What's the rule?

$$/d$$
/ → [δ] / V____ 'A dental stop becomes a dental fricative after a vowel'

4 □ ▶